Download Power Electronics Handbook Devices Circuits and Applications Second Edition by Muhammad H. Rashid easily in PDF format for free.

The purpose of Power Electronics Handbook second edition is to provide an up-to-date reference that is both concise and useful for engineering students and practicing professionals. It is designed to cover a wide range of topics that make up the field of power electronics in a well-organized and highly informative manner. The Handbook is a careful blend of both traditional topics and new advancements. Special emphasis is placed on practical applications, thus, this Handbook is not a theoretical one, but an enlightening presentation of the usefulness of the rapidly growing field of power electronics.
The presentation is tutorial in nature in order to enhance the value of the book to the reader and foster a clear understanding of the material. The contributors to this Handbook span the globe, with fifty-four authors from twelve different countries, some of whom are the leading authorities in their areas of expertise. All were chosen because of their intimate knowledge of their subjects, and their contributions make this a comprehensive state-of-the-art guide to the expanding field of power electronics and its applications covering: 
• the characteristics of modern power semiconductor devices, which are used as switches to perform the power conversions from ac–dc, dc–dc, dc–ac, and ac–ac; 

• both the fundamental principles and in-depth study of the operation, analysis, and design of various power converters; and 
• examples of recent applications of power electronics
The first electronics revolution began in 1948 with the invention of the silicon transistor at Bell Telephone Laboratories by Bardeen, Bratain, and Shockley. Most of today’s advanced electronic technologies are traceable to that invention, and modern microelectronics has evolved over the years from these silicon semiconductors. The second electronics revolution began with the development of a commercial thyristor by the General Electric Company in 1958.
That was the beginning of a new era of power electronics. Since then, many different types of power semiconductor devices and conversion techniques have been introduced. The demand for energy, particularly in electrical forms, is ever-increasing in order to improve the standard of living. Power electronics helps with the efficient use of electricity, thereby reducing power consumption.

Semiconductor devices are used as switches for power conversion or processing, as are solid state electronics for efficient control of the amount of power and energy flow. Higher efficiency and lower losses are sought for devices for a range of applications, from microwave ovens to high-voltage dc transmission. New devices and power electronic systems are now evolving for even more efficient control of power and energy. Power electronics has already found an important place in modern technology and has revolutionized control of power and energy.
As the voltage and current ratings and switching characteristics of power semiconductor devices keep improving, the range of applications continues to expand in areas such as lamp controls, power supplies to motion control, factory automation, transportation, energy storage, multi-megawatt industrial drives, and electric power transmission and distribution. The greater efficiency and tighter control features of power electronics are becoming attractive for applications in motion control by replacing the earlier electro-mechanical and electronic systems. Applications in power transmission include high-voltage dc (VHDC) converter stations, flexible ac transmission system (FACTS), and static-var compensators. In power distribution these include dc-to-ac conversion, dynamic filters, frequency conversion, and Custom Power System.