Download Structural Concrete Theory and Design Fifth Edition by M. Nadim Hassoun and Akthem Al-Manaseer easily in PDF format for free.


The main objective of a course on structural concrete design is to develop, in the engineering student, the ability to analyze and design a reinforced concrete member subjected to different types of forces in a simple and logical manner using the basic principles of statistics and some empirical formulas based on experimental results. Once the analysis and design procedure is fully understood, its application to different types of structures becomes simple and direct, provided that the student has a good background in structural analysis.




The material presented in this book is based on the requirements of the American Concrete Institute (ACI) Building Standard 318-11, International Building Code IBC-2012, American society of Civil Engineers Load Standards ASCE 7-10, and AASHTO LRFD Bridge Design Specifications. Also, information has been presented on material properties, including volume changes of concrete, stress–strain behavior, creep, and elastic and nonlinear behavior or reinforced concrete. Concrete structures are widely used in the United States and almost all over the world.




The progress in the design concept has increased in the last few decades, emphasizing safety, serviceability, and economy. To achieve economical design of a reinforced concrete member, specific restrictions, rules, and formulas are presented in the codes to ensure both safety and reliability of the structure. Engineering firms expect civil engineering graduates to understand the code rules and, consequently, to be able to design a concrete structure effectively and economically with minimum training period or overhead costs.




The book is an outgrowth of the authors’ lecture notes, which represent their teaching and industrial experience over the past 32 years. The industrial experience of the authors includes the design and construction supervision and management of many reinforced, prestressed, and precast concrete structures. This is in addition to the consulting work they performed for international design and construction firms, professional registration in the United Kingdom, Canada, and other countries, and a comprehensive knowledge of other European codes on the design of concrete structures. The book is written to cover two courses in reinforced concrete design.




Depending on the proficiency required, the first course may cover Chapters 1 through 7, 9, 10, 11, and 13, whereas the second course may cover the remaining chapters. Parts of the late chapters may also be taught in the first course as needed. A number of optional sections have been included in various chapters. These sections are indicated by an asterisk (*) in the Contents and may easily be distinguished from those that form the basic requirements of the first course. The optional sections may be covered in the second course or relegated to a reading assignment.




Brief descriptions of the chapters are given below. The first chapter of the book presents information on the historical development of concrete, codes of practice, loads and safety provisions, and design philosophy and concepts. The second chapter deals with the properties of concrete as well as steel reinforcement used in the design of reinforced concrete structures, including stress–strain relationships, modulus of elasticity and shear modulus of concrete, shrinkage, creep, fire resistance, high-performance concrete,  and fibrous concrete. Because the current ACI Code emphasizes the strength approach based on strain limits, this approach has been adopted throughout the text. 

DOWNLOAD NOW