Download Principles of Modern Chemistry sixth Edition by David W.Oxtoby, H.P.Gillis and Alan Campion easily in PDF format for free.

When the first edition of Principles of Modern Chemistry appeared in 1986, the standard sequence of topics in honors and high-level mainstream general chemistry courses began with macroscopic descriptions of chemical phenomena and proceeded to interpret these in terms of molecular structure. This traditional “macro-to-micro” approach has shifted in recent years, and today the central topics in these courses are chemical bonding and molecular structure.
The relation of molecular structure to function and properties requires the introduction of molecular structure early in the course and the use of structural arguments in presenting the remaining topics. In preparing the sixth edition, we have revised the textbook extensively to meet these present-day needs. In particular, we believe that the most logical sequence of topics begins with the physical properties and structure of atoms; is followed by structure, bonding, and properties of molecules.

Proceeds to describe macroscopic collections of atoms and molecules; continues with a discussion of chemical properties and reactions under equilibrium conditions; and finishes with dynamics and kinetics.  ■ New Treatment and Placement of Structure and Bonding Chemical bonding and molecular structure are now at the beginning of the book. We describe the classical elements of bonding theory—ionic, covalent, and polar bonds; dipole moments; Lewis electron diagrams; and Valence Shell Electron Pair Repulsion (VSEPR) theory.

We present a unified and thorough treatment of quantum bonding theory, presenting the molecular orbital (MO) and valence bond (VB) models on equal footing and at the same intellectual and conceptual level. We provide detailed comparisons of these two models and show how either one can be the starting point for the development of computational quantum chemistry and molecular simulation programs that our students will encounter soon in subsequent chemistry courses.

■ New Molecular Art Molecular shapes are rendered with quantitative accuracy and in modern graphical style. All illustrations of atomic and molecular orbitals, charge density, and electrostatic potential energy maps were generated from accurate quantum chemistry calculations carried out at the California Institute of Technology. For this edition, the orbitals were plotted using stateof-the-art software at the Texas Advanced Computing Center at the University of Texas at Austin. The colors, lighting effects, and viewing angles were chosen to display three-dimensional objects with maximum clarity and to provide chemical insight.

■ Greater Flexibility in Topic Coverage In response to user and reviewer comments, greater modularity and flexibility have been built into the text to make it compatible with alternative sequences of topics. While moving the discussion of bonding and structure to the beginning of the book, we have been careful to maintain the option to follow the “macro-to–micro” approach used in previous editions. Selecting alternative approaches is facilitated by the Unit structure of the book; we offer several suggestions in the Teaching Options section.